Blender 2.8 facial mocap using OpenCV and webcam | VFXMDSANIMA

Hello World! Today's 3D news from VFXMDSANIMA.
screen shot a

Some screenshot of this video.
screen shot b screen shot c screen shot d screen shot e
Youtube Description:
Real-time facial motion capture in Blender 2.8 using OpenCV and a webcam. This uses python scripting directly in Blender. Installation Commands (change to python/python3/python3.7m): python3 -m ensurepip python3 -m pip install --upgrade pip --user python3 -m pip install opencv-python opencv-contrib-python imutils numpy dlib --user Blender Cloud: https://cloud.blender.org/p/characters Python scripts: https://github.com/jkirsons/FacialMotionCapture Facial landmarks database: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 Additional documentation on ibug facial annotations: https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/ Citations: C. Sagonas, E. Antonakos, G, Tzimiropoulos, S. Zafeiriou, M. Pantic. 300 faces In-the-wild challenge: Database and results. Image and Vision Computing (IMAVIS), Special Issue on Facial Landmark Localisation "In-The-Wild". 2016. C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, M. Pantic. 300 Faces in-the-Wild Challenge: The first facial landmark localization Challenge. Proceedings of IEEE Int’l Conf. on Computer Vision (ICCV-W), 300 Faces in-the-Wild Challenge (300-W). Sydney, Australia, December 2013. C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, M. Pantic. A semi-automatic methodology for facial landmark annotation. Proceedings of IEEE Int’l Conf. Computer Vision and Pattern Recognition (CVPR-W), 5th Workshop on Analysis and Modeling of Faces and Gestures (AMFG 2013). Oregon, USA, June 2013.

Featured Video:

Featured Post in MDSANIMA BLOG

Comments

FEATURED VIDEO