Hello World! Today's 3D news from VFXMDSANIMA.

Source: Gadget Workbench
Some screenshot of this video.




Youtube Description:
Real-time facial motion capture in Blender 2.8 using OpenCV and a webcam.
This uses python scripting directly in Blender.
Installation Commands (change to python/python3/python3.7m):
python3 -m ensurepip
python3 -m pip install --upgrade pip --user
python3 -m pip install opencv-python opencv-contrib-python imutils numpy dlib --user
Blender Cloud:
https://cloud.blender.org/p/characters
Python scripts:
https://github.com/jkirsons/FacialMotionCapture
Facial landmarks database:
http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
Additional documentation on ibug facial annotations:
https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/
Citations:
C. Sagonas, E. Antonakos, G, Tzimiropoulos, S. Zafeiriou, M. Pantic. 300 faces In-the-wild challenge: Database and results. Image and Vision Computing (IMAVIS), Special Issue on Facial Landmark Localisation "In-The-Wild". 2016.
C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, M. Pantic. 300 Faces in-the-Wild Challenge: The first facial landmark localization Challenge. Proceedings of IEEE Int’l Conf. on Computer Vision (ICCV-W), 300 Faces in-the-Wild Challenge (300-W). Sydney, Australia, December 2013.
C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, M. Pantic. A semi-automatic methodology for facial landmark annotation. Proceedings of IEEE Int’l Conf. Computer Vision and Pattern Recognition (CVPR-W), 5th Workshop on Analysis and Modeling of Faces and Gestures (AMFG 2013). Oregon, USA, June 2013.
Featured Video:
Featured Post in MDSANIMA BLOG
Comments
Post a Comment